
8. Probability. 
 

As we will see in Ch. 11, quantum mechanics tells us the observer perceives only 
one version of reality, in spite of the fact that several versions exist in the wave function. 
It doesn’t tell us which one we will perceive on a given run, but it does tell us the 
probability of perceiving a particular outcome.  This introduction of probability into the 
theory presents a substantial problem for understanding just how the mathematics of 
quantum mechanics relates to what we perceive.  But before we can phrase the 
problem, we need to understand probability in quantum mechanics in more detail.  To 
illustrate, we will again use the half-silvered mirror experiment of Ch. 6. 
 
Coefficients. 

We suppose the thickness of the silver on the mirror can be varied, so that 
different amounts of the light wave function are reflected in the vertical direction or 
transmitted in the horizontal direction. We will first show how the light wave function 
changes as we change the thickness of the silver.  Before the light hits the mirror, the 
wave function for a single packet is 
 
     |before〉=|h〉=(1) |h〉        (1) 
 
where the h stands for the horizontal part of the path in Fig. (8-1) before the mirror.   
 

 
 

Figure 8-1. Wave function of photon about to hit half-silvered mirror. 
 
If the mirror is truly half silvered, then after it hits the mirror the light wave function is  

 
|after〉=(.707)|H〉+(.707)|V〉.        (2) 

 

http://implications-of-quantum-mechanics.com/Ch11-Perception-of-only-one-version-of-reality.html
http://implications-of-quantum-mechanics.com/Ch6-Versions-of-reality-half-silvered-mirror.html


where |H〉 stands for the version of the packet on the horizontal path after the mirror, 
and similarly for |V〉.  But if the mirror is more than half silvered, so that more of the light 
is reflected on the vertical path, the wave function after the mirror might be  

 
|after〉=(.6)|H〉+(.8)|V〉.        (3) 

 
where the .6 and .8 correspond to some specific thickness of silver.  The diagram 
corresponding to this state is 
 



 
 

Figure 8-2.  Unequal splitting by the mirror.  There are two versions of reality, the 
.8 version (upper diagram) and .6 version (lower diagram).   

 
What is being illustrated in the equations and by the different sizes of the circles in the 
figures is the idea of the coefficients, the numbers in parentheses, in front of the kets—
the |h〉, the |H〉 and the |V〉.  In Eq. (1) the single coefficient is 1; in Eq. (2) the two 



coefficients after the mirror are .707 and .707; and in Eq. (3), the two coefficients are .6 
and .8.  
 
 
Coefficients and the “amount” of the wave function. 
Conservation of “amount.” 

We now go back to the idea from Ch. 4 that the wave function can be visualized 
as a (water) mist.  In this visualization, the ‘amount’ of the wave function would be the 
total amount of water in the mist.  Because of the way the mathematics of quantum 
mechanics works (unitarity, A8.1), the total amount stays the same for each wave 
function for all time.  This is conservation of amount; the total amount is the same both 
before and after the mirror in the half-silvered mirror case.   
 In terms of mathematical formulas, it works this way: The ‘amount’ for a ket with  
coefficient 1, say |V〉, is, by convention, always taken as 1.  When there are two (or 
more) parts to the wave function, as in the RHS of Eq. (3), the total amount in quantum 
mechanics is the sum of the squares of the coefficients.  The unitarity property then 
implies that for any wave function, no matter how it evolves in time, the sum of the 
squares of the coefficients is always 1 for all time.  For example, the (implied) coefficient 
on the LHS of Eq. (3) is 1, so its square is 1.  And then the sum of the squares on the 
RHS, after the light has hit the mirror is (.6)2+(.8)2, which is also 1.  And the same works 
for Eq. (2) because (.707)2+(.707)2=1. 
 
The probability law. 
 It is found experimentally that the probability of perceiving a certain state is 
equal to the coefficient squared.  So for example, the probability of perceiving the V 
detector reading yes in Eq. (8-3) is (.8)2=.64, and the probability of perceiving the H 
detector reading yes is (.6)2=.36.  And the two add up to 1, as they must for 
probabilities. 
 
Consistency of the probability law and unitarity. 
 From the definition of probability, it is a requirement that the sum of the 
probabilities must be 1.  But because of unitarity, which says the sum of the squares of 
the coefficients will always be 1, and the fact that probability of state j is equal to |a(j)|2,  
we are guaranteed that the sum of the  probabilities will always be 1.  Thus the 
experimentally deduced |a(j)|2 probability law, which implies that the sum of the squares 
of the coefficients is 1, is consistent with the theoretical property of unitarity, which says 
exactly the same thing! 
 Further, not only is it consistent, but if one assumes there is probability of 
perception in quantum mechanics, then, using unitarity, one can actually derive the 
coefficient squared probability law.  This is done in A8.2.  There is, however, currently 
no way to justify the assumption of probability. 
 
The problem with probability in quantum mechanics. 

We will discuss this more thoroughly in Ch. 18, but the problem with probability in 
quantum mechanics is that the basic mathematics of quantum mechanics is 
deterministic; there is no probability at all in the mathematics.  Once the wave function 
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starts out, its future is determined forever (just as in classical physics!).  And so 
probability and the coefficient squared probability law must have their origin outside the 
basic mathematical-conceptual scheme.  Explaining probability is the reason—the only 
reason—why we need an interpretation of quantum mechanics. 
 
The information quantum mechanics gives us. 

It is important to note that the basic mathematics of quantum mechanics 
determines the coefficients as well as the possible states of reality.  Thus quantum 
mechanics gives us both the possible states, including energy levels, readings on 
detectors, and so on, and the probability of perceiving each state. 
 
Another form for the probability law. 

The probability law is sometimes stated by saying that |𝜓(𝑥)|2 is proportional to 
the probability of finding a particle at x, where 𝜓(𝑥) is the wave function at x.  In one 
sense this is not a good statement of the probability law because there is no evidence 
for particles.  But in another sense, it is essentially just the same as the coefficient 
squared probability law, with position, x, taking the place of the state designator, say, j 
(and “the probability of finding a particle at x” replaced by “the probability of perceiving a 
particle-like disturbance at x”). 
 
Evaluation. 

A small minority of physicists claim probability of perception can be deduced from 
the mathematics of quantum mechanics alone.  But it cannot because there is no 
probability of perceiving one version or the other in the mathematics; all versions are 
perceived on every run.  This will be discussed more fully in Ch. 18.  Aside from this 
point, all physicists would agree with the discussion of probability given here.  
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