
12. Particle-Like Properties of Matter. 
Mass, energy, momentum, spin, charge. 

 
Over the next five chapters, we will consider the evidence for particles.  One 

might think the evidence is overwhelmingly diverse, but it is not; there are just a few 
basic observations that are used to support this concept.  Our goal is to show these 
basic observations can all be accounted for by the mathematics of quantum mechanics 
and the properties of the wave functions.  So although we can’t actually prove particles 
don’t exist, it is consistent with all observations to assume the world is made solely from 
wave functions/state vectors.   

 
Only one version of reality is perceived in quantum mechanics. 

The first step was taken in Ch. 11.  There we showed that only one version of 
reality can be perceived, exactly as if the world was made of objectively existing 
particles (where “objectively” means there is a single, unique version of the object).  So 
in this way at least, wave functions, with their many versions of reality, imitate a world 
made of objectively existing particles. 
 
The particle-like properties of mass, energy, momentum, spin, and charge. 

The next step is to consider the properties of mass, energy, momentum, spin and 
charge, which have conventionally been associated with particles since the time of 
Newton.  These properties, along with locality, essentially define the concept of 
particles.  

 
Mass.  Mass is related to weight; if something is heavier, it has more mass.  But 
weight depends on gravity, the attractive force between an object and the earth, 
whereas mass is independent of the gravitational force.  A rock has the same 
mass on the moon as on earth, but not the same weight.  Mass might best be 
classically described as resistance to acceleration; the more mass, the harder it 
is to accelerate an object. 
Charge.  Charge has to do with how particles interact. We are most familiar with 
electrical charge, where like charges repel and unlike attract.  But there are also 
charges associated with the strong nuclear force and with the weak forces that 
govern neutrinos. 
Energy and momentum are attributes of matter that are related to the velocity 
and mass of the object.  Their precise definition, I think, is not important here, 
except perhaps for one case.  If an electron (for example) is just sitting there, 
without moving, it still has a “rest” energy of mec2, Einstein’s famous formula (me 
is the mass, c is the speed of light). 
Spin.  Spin is actually a quantum mechanical term. In classical physics, and also 
often in quantum mechanics, it is called angular momentum.  Classically, if one 
particle is in orbit around another, the particle has angular momentum, the 
momentum of circular motion, so to speak.  Traditionally, one visualizes a particle 
with spin as a whirling top.  But there is no top, it’s just a conceptually easy (but 
somewhat misleading) way to think of it. 
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In classical Newtonian physics, mass and charge are thought of as basic 
properties of matter which belong to and are carried by particles.  Energy, momentum, 
and angular momentum are classically thought of as properties due to the motion of 
particles.   

Our goal here is to show that these five particle-like attributes can actually be 
shown to be properties of the wave function (or more technically the state vector).  
This means there is no reason to assume, on this account at least, that there are actual, 
objectively existing particles, separate from the wave function, which carry mass, spin, 
charge and so forth.  Or to put it another way, these particle-like properties cannot be 
used as evidence for the existence of particles because they can be explained 
otherwise; they can be mathematically shown to be properties of the wave functions.  

 
Classifying solutions to equations in quantum mechanics. 

The mathematical reasoning starts with a property of solutions to equations.  In 
simple algebraic equations, such as 3x+4=10, there is only a single solution (x=2).  But 
almost all the equations in quantum mechanics are calculus equations, which typically 
have an infinite number of solutions.  This means that, to avoid chaos, and to make sure 
the solution fits the relevant physical problem, it is often important to find some way of 
classifying solutions to calculus equations. 
 

The classification process and related reasoning for quantum mechanics, where 
almost all the equations are calculus equations, is intriguing.  We will describe it here as 
it relates to rotations in three dimensions. 
(1). It starts from the physical observation that the outcome of experiments on the 
atomic level does not depend on how the experimental apparatus is oriented.  It can be 
oriented North-South, East-West, up-down, or at some angle between these, and that 
makes no difference to the outcome of the experiments (provided gravity can be 
ignored). 
(2). This physical observation has a reflection in the form of the equations, say the 
Schrödinger equation for the hydrogen atom.  They must have a certain symmetry. The 
equations “look the same” when one changes the orientation of the experimental 
apparatus.  (See A12.1.) 
(3). The form dictated by the symmetry then has a consequence for the classification 
of solutions.  In the case where the orientation of the apparatus in three-dimensional 
space makes no difference, the form of the equations implies solutions can be classified 
according to their spin (angular momentum). 
(4). The classification is not just mathematical; it has physically measurable 
consequences.  The electron-like wave function in the hydrogen atom has 
measureable angular momentum which agrees with the result derived from the 
mathematics of quantum mechanics. 
(5). Finally, the mathematics yields a conservation law; in the hydrogen atom example, 
the actual numerical value of the total angular momentum stays the same no matter 
what happens within the system.  And the mathematics leads to addition rules when 
there are several particle-like states present. 
 
Quantization. 
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There is one more interesting property in the case of spin. The mathematics tells 
us, and experiment confirms, that in the hydrogen atom case spin can have only integer 
values, 0, 1, 2, … in the appropriate units.  That is—in contrast to the classical case, 
where angular momentum can take on any value—angular momentum is quantized; it 
can take on only certain discrete values rather than being able to take on a continuum 
of values! 

This is an amazing result.  One gets a physically measurable property, a 
conservation law, and the experimentally confirmed quantization,out of almost nothing, 
just the fact that the orientation of the apparatus makes no difference!  
 
Spin “belongs to” the wave function. 

For the point we are trying to make, it is important to note that in any reasonable 
sense the quantized spin deduced above can be said to “belong to” or “be carried by” 
the wave function (state vector).  There is no reason within the derivation of the 
quantized values of spin to suppose it ‘belongs to’ an actual particulate electron 
because the only ‘object’ that enters the mathematics and the reasoning is the wave 
function. 
 
Classification of particle states from space-time symmetries. 

Now we can generalize from our example in which only invariance to rotation in 
three dimensions was used for illustration.  First, experimental results do not depend on 
where the experiment is done, or when (translational invariance).  Further, Einstein 
deduced relativity which says that the equations of physics must be invariant under 
certain relativistic rotations involving both space and time.   (They include rotations in 
three-dimensional space, but they also involve velocity.)  These invariances—where, 
when, four-dimensional relativistic rotations—then have a number of consequences for 
the form of the equations of quantum mechanics, and for classifying the solutions to the 
equations.  (See A12.2, on group representation theory).   

First, the invariance under where and when implies the solutions—the wave 
functions— can be labeled by energy and momentum.  Further the mathematical 
properties associated with these labels correspond exactly to the physically measured 
properties of energy and momentum.  In addition, one gets conservation of energy 
and momentum; for an isolated system, the total energy and momentum remain the 
same forever.  And the addition laws implied by quantum mechanics for energy and 
momentum when one has more than one ‘particle’ are just the usual, experimentally 
verified laws. 

Second, if we also take into account invariance under Einstein’s relativistic 
rotations, then the solutions acquire two additional properties—spin (analogous to the 
angular momentum of the hydrogen atom) and mass.  In this case, the allowed values 
for spin are still quantized, but they also include half-integer values; 0, 1/2, 1, 3/2,  2,… 
(The possible values for mass are not limited by the invariances).  See A12.3 for the 
derivation of the quantization.   

 
Like the wave function, there is really no good way of visualizing the spin of an 
elementary ‘particle’ in quantum mechanics.  When we say an electron has spin 
½ , there is no object, or even wave function,  that is actually spinning in space.  
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The spin of an elementary particle has no analog in classical physics or the world 
of our senses. 
 
This result borders on the miraculous!  Mass itself, perhaps the most basic 

property of matter, is a consequence of the simple observation that the outcomes of 
experiments don’t depend on the orientation (generalized to include relativistic rotations) 
or position of the apparatus!  (See A12.4 on speculation about a theory of gravity based 
on this idea.) And the mathematically allowed quantized values for the angular 
momentum—and only these values—are exactly observed; electrons, quarks and 
neutrinos, for example, have spin ½ while the photon has spin 1 (and no particle has, 
for example, spin 2/5).  This provides a great example of Wigner’s “unreasonable 
effectiveness of mathematics.”   (And in fact, it was Wigner who derived these group 
theoretic results on mass, spin and so on.) 
 
Internal symmetries and charge. 

The only remaining property is charge.  The charges have the same invariance-
under-rotation type of origin as spin, only in a peculiar way.  It was found experimentally 
that the proton, neutron and all other strongly interacting “elementary” particles were 
made up of three more elementary particles—quarks.  The only way to make sense of 
all the various experiments was to suppose the quarks came in three ‘colors’ (nothing to 
do with actual colors, of course; just colorful language).  Further the theory had to be 
invariant—did not change form— under (complex) rotations in the color space, just as 
the hydrogen atom theory was invariant under rotations in our ordinary three-
dimensional space.  And the labels associated with this invariance are the strong 
charges. 
 A similar argument can also be made for the electromagnetic and weak charges, 
with all charges quantized as integer multiples of the basic charges.  (In the case of 
quarks, the basic electrical charge is 1/3 the charge on the electron.)  Thus, just as 
mass and so on are labels, and physical properties, associated with the wave function 
due to invariance under space-time rotations and translations, so the three types of 
charges—strong, electromagnetic, and weak—are labels, and physical properties, 
associated with the wave function due to an “internal”—“within the particle,” so to speak, 
not in extended space and time—set of rotations in some abstract space. 
 
 So we see that the particle-like properties—mass, energy, momentum, spin, and 
the charges—are found, through the invariance argument, to actually be properties of 
the wave functions (state vectors).  Or more carefully, these properties can be 
attributed to the wave function, so they cannot be used as evidence for the existence of 
particles. 
 From now on, we may still use the word particle, but we mean a particle-like 
wave function.  The word “electron” refers to a wave function with mass me, electrical 
charge –e, and spin ½ while “photon” refers to a wave function with 0 mass, 0 charge 
and spin 1. 
 
Ket notation. 
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 The ‘state’ of a particle-like system is given by specifying the values of the 
various quantities—mass and so on.  So the general particle-like state in ket notation 
(A6.2) is 
 
                                                |𝜓〉= |𝑚, 𝐸, 𝑝, 𝑆, 𝑠𝑧, 𝑄〉                                                      (1) 
 
where m is the mass, E is the energy, p is the momentum, S is the total angular 
momentum, 𝑠𝑧 is the z component of angular momentum, and Q stands for all three 
charges.  The problem is that we will show there is no evidence for particles.  So that 
raises the question of what the ket |𝑚, 𝐸, 𝑝, 𝑆, 𝑠𝑧 , 𝑄〉  stands for. This is the fourth 
mystery, addressed in Part IV. 
 
Abstractness. 

The internal symmetry idea is very abstract, not directly related at all to things we 
can actually see or touch.  How can we trust such an abstract argument when it is so 
distant from our everyday perceptions? 

The answer a physicist would give is that abstractness permeates much of 
modern physics (quantum mechanics) and so one must learn to live with it.  We can’t 
actually see spin, for example, but it works so well in describing so much data from 
varied experiments that physicists are convinced of the “reality” of spin.  The same 
holds for internal symmetries.  They explain so much data from so many varied 
experiments that they are as real—at least to a physicist—as what we actually see.   

A couple of further thoughts on what we can and cannot see, and mathematics.  
In our attempt to probe what matter is like, physics experiments constitute a vast 
extension of our unaided senses.  So it seems unnecessarily restrictive to say that we 
can only conceptually work with what we can see with the naked eye.   

The theories of physics are the distillation of the results of millions of 
experiments.  They are mathematical-conceptual models of physical reality, models 
which work in many varied circumstances and never, in the case of quantum mechanics 
at least, lead to incorrect results.  Such concepts in this context are the wave functions 
and their associated spin, charge, and mass.  It seems appropriate to suppose these 
properties correspond to “real” properties of matter, just as real as the properties we 
directly perceive, even if they transcend the concepts and sense-perceptions of our 
everyday world.  In the case of internal symmetries, one might say the theory points to 
dimensions of reality we cannot directly perceive (see Part IV).  

 
A somewhat related thought comes up from a neuroscientific or philosophical 

point of view.  Our everyday concepts of the nature of the physical world—which 
correspond to neural firing patterns—have to do with our lifetime of perceiving the 
physical world.  So those concepts do not have to do with the ‘actual’ nature of physical 
reality; they only have to do with its perceived nature and the way those perceptions are 
modeled in the circuitry of the brain.  In that sense then, our everyday perceptions of the 
physical world can never reveal the actual nature of physical reality (see Part IV).  But 
that doesn’t mean the actual nature of physical reality is forever hidden.  We can 
deduce the mathematical equations matter obeys from experiment, and we can then 
hope to deduce the actual nature of matter from the mathematics.  This idea has 
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already implicitly come up in Part I; we don’t directly see the wave function, but we 
assume it “exists” because it gives such a good description of what we perceive.  This 
idea will re-emerge even more strongly in Part IV. 
 
Evaluation. 

Relatively few physicists are aware of the implications of the symmetry 
arguments.  It shows that the particle-like properties of mass, energy, momentum, spin, 
and charge, which were thought for centuries to be intrinsic properties of particles, can 
instead be mathematically derived as properties of the wave function.  Why is this 
most important result unknown?  Because the mathematical discipline of group 
representation theory used in the argument is not well-known among physicists.  But 
there is no doubt it is correct.  It was originally given by the Nobel laureate E. P. Wigner 
in 1939 and has never been challenged. 
 Again, it is absolutely astonishing that invariance of the results of experiments to 
orientation or position should imply that wave functions have the particle-like properties 
of mass, energy, momentum, quantized spin, and charge. 
 Abstractness.  It would be interesting to take a poll of physicists and see how 
many consider the wave function, spin, internal symmetries, and even quarks to be 
“real,” rather than corresponding to a mathematical scheme that the real world happens 
to follow.  My guess is that it would split as follows: about 40% would say the abstract 
quantities correspond to something real; about 30% would say quantum mechanics is 
just a mathematical scheme that the real world (for unknown reasons) follows; and 
about 30% would say the question makes no sense because there’s no good way to 
define or understand “real.”  
 
 
 


