
A20.1. Mathematical details of the  
Bohm hidden variable model. 

 
 
 The Bohm model [1] piggybacks on a conservation law in quantum mechanics, 
so we will describe that law first. 
 
Unitary time translation and conservation of probability in QM. 

If the Hamiltonian is hermitian, 𝐻† = 𝐻, then the time translation operator is 
unitary: 
 
                                                   𝑈(𝑡) = 𝑒𝑖𝐻𝑡, 𝑈†(𝑡) = 𝑒−𝑖𝐻†𝑡 = 𝑒−𝑖𝐻𝑡                                       (1) 

⇒ 𝑈†(𝑡)𝑈(𝑡) = 1 
 

Thus the norm of the state vector stays the same for all time: 
 
                             〈Ψ(t)|Ψ(t)〉 = 〈𝛹(0)𝑈†(𝑡)|𝑈(𝑡)𝛹(0)〉 = 〈Ψ(0)|Ψ(0)〉                              (2) 
 
This has the consequence that if the state vector splits into several parts, separated 
from each other in space, then the sum of the norms squared of the separate parts 
equals 1. 
 
Differential conservation law for the wave function. 
No spin, non-relativistic. 
 

We have a single particle with Schrodinger time evolution 
 

                                                 𝜕𝑡𝜓 = −𝑖𝐻𝜓 = (−𝑖) [
−ℏ2

2𝑚
∇2 + 𝑉(𝑟)] 𝜓                                           (3) 

𝜕𝑡𝜓∗ = +𝑖𝐻𝜓∗ = (+𝑖) [
−ℏ2

2𝑚
∇2 + 𝑉(𝑟)] 𝜓∗ 

 
𝜕𝑡(𝜌) = 𝜕(𝜓∗𝜓) = 

                                                               
−𝑖ℏ2

2𝑚
[𝜓∇2𝜓∗ − 𝜓∗∇2𝜓] =                                                         (4) 

−𝑖ℏ2

2𝑚
∇ • [𝜓∇𝜓∗ − 𝜓∗∇𝜓] = −∇ • J 

𝐽 =
𝑖ℏ2

2𝑚
[𝜓∇𝜓∗ − 𝜓∗∇𝜓] 

 
Thus 
 
                                                                      𝜕𝑡(𝜌) + ∇ • J = 0                                                     (5) 
 
This is the differential conservation law.   



 
Why is it called a conservation law?  Because it implies probability is conserved.  The 
norm of the state ∫ 𝑑𝑥 𝜓(𝑥, 𝑡)|𝑥〉 is ∫ 𝑑𝑥  𝜌(𝑥, 𝑡) and, for sufficiently large volume Ω 
 
                                                  𝜕𝑡 ∫ 𝑑𝑥 𝜌(𝑥, 𝑡) =

Ω
∫ 𝑑𝑥 𝜕𝑡𝜌(𝑥, 𝑡) =

Ω
                                        (6) 

− ∫ 𝑑𝑥 ∇ • J = − ∫ 𝑑𝐴 • J = 0
𝑆Ω

 

 
where the last equality comes from J being 0 on the distant (three-dimensional) surface 
S.  Thus the integral of the probability density over all space, equal to the norm squared, 
is constant in time.  Hence the name ‘conservation law.’ 
 A similar equation applies to spinless, non-relativistic systems consisting of 
several ‘particles’ which obey the Schrodinger equation 
 
                                                     𝑖 ℏ𝜕𝑡Ψ(r1, r2, … ) = HΨ(r1, r2, … )                                           (7) 

𝐻 =
−ℏ2

2𝑚
∑ ∇𝑘

2 + ∑ 𝑤(𝑗 − 𝑘) + ∑ 𝑉(𝑘)

𝑘𝑗,𝑘

 

 
with w being the internal particle-particle potential energy and V the external potential 
energy.  The conservation law then become 

                                                      𝜕𝑡  𝜌(r1, r2, … , t) + ∑ ∇𝑘

𝑘

• 𝐽𝑘 = 0                                                 (8) 

𝐽𝑘(r1, r2, … , 𝑡) =
𝑖ℏ2

2𝑚
[𝜓∇𝑘𝜓∗ − 𝜓∗∇𝑘𝜓] 

𝜌(r1, r2, … , t) = 𝜓∗(r1, r2, … , t)𝜓(r1, r2, … , t) 
 
General attempt to find a conservation law. 
 

𝜕𝑡 𝜓 = −𝑖𝐻𝜓 
                                                                        (𝜕𝑡  𝜓)† = 𝑖𝜓†𝐻                                                     (9) 

𝜕𝑡(𝜓†𝜓) = 𝑖(𝐻𝜓)†𝜓 − 𝑖𝜓†𝐻𝜓 
 
If this is to give a conservation law, then the RHS must be proportional to a gradient.  .  
Note that if J works, then 𝐽 + ∇ × K works also because ∇ • ∇ × K = 0. 

Note also that because 𝐻 ≈ √𝛻2 for photons, there doesn’t seem to be a 
conservation law for photons.  Thus it is quite possible that the Bohm strategy cannot be 
made to work for photons. 
 
The spin ½ Pauli equation and its conservation law. 

The Pauli equation is half way to a relativistic theory, so it is worth doing here.  
The wave functions are column vectors of length 2. 
 



                                         𝐻 = 𝑚𝑐2 +
(𝑝 − 𝑒𝐴/𝑐)2

2𝑚
+ 𝑒𝜙 −

𝑒ℏ

2𝑚𝑐
𝜎 • B                            (10) 

𝜎𝑥 = [
0 1
1 0

] , 𝜎𝑦 = [
0 −𝑖
𝑖 0

] , 𝜎𝑧 = [
1 0
0 −1

]   

 
It appears that the J in this case will be the same as in the no-spin case.  One could 
also add a ‘Ki’ term such as 𝜓† 𝜎𝑖 𝜓. 
 
The Bohm model. 
Single particle, no spin. 

We are now ready to describe the Bohm model for a single particle.  For each 
point x, we define a velicity, v, from 
 
                                                                              𝐽 = 𝜌𝑣                                                             (11) 

 
This defines a trajectory which goes through point x. 

Construction of the trajectory: We call the initial point on a particular trajectory as 
x0.  The next point, reached at time 𝛿𝑡, is x1=x0+v(x0,t) 𝛿𝑡.  We then calculate v1 
at x1, t+ 𝛿𝑡 
and set x2=x1+v1 𝛿𝑡, etc. 

This defines a continuous infinity of trajectories, one for each starting point x0.  But we 
could imagine using a very fine net of starting points x so there is instead a discrete set 
of trajectories. 
 Suppose we now do one run of whatever experiment we are considering.  It is 
then assumed that, associated with the wave function on that run, there is an actual 
particle placed on one of the trajectories, with the particle having velocity 
v(x)=J(x)/ 𝜌(𝑥).  The hidden variables at a particular instant are then the position x and 
the velocity v.  So this is essentially assuming the ‘simplistic’ view that there is a particle 
embedded in the wave function.  Note that a ‘particle’ is arbitrarily placed on just one of 
the many possible trajectories.  For a ‘single-particle’ wave function, one never places 
two ‘particles’ on different trajectories even though that is not prohibited by the 
mathematics.  

There is no real reason to call this point a ‘particle,’ so we will call it the Bohm 
“system point.” 
 
Density of trajectories.   
 On each run of the experiment, the (conjectured) incoming system point will be 
on a definite trajectory, depending on its preparation history.  The density of trajectories 
for the Bohm model, 𝜌𝐵(𝑥, 𝑡), is then arbitrarily assumed to be equal to  
 
                                                            𝜌𝐵(𝑥, 𝑡) = 𝜓∗(𝑥, 𝑡)𝜓(𝑥, 𝑡)                                             (12) 
 
The meaning of 𝜌𝐵(𝑥, 𝑡) is that 𝑑3𝑥𝜌𝐵(𝑥, 𝑡) is the probability of finding the system point 
on a trajectory in the element d3x centered on x.  But the Bohm density 𝜌𝐵(𝑥, 𝑡) is the 
same as the quantum mechanical density, 𝜌𝑄𝑀(𝑥, 𝑡), which is the probability  of finding 
‘the particle’ at point x. 



 
Probability. 
 Supppose we do a Stern-Gerlach experiment.  At time t(0), before the magnet, 
the wave function is non-zero only in a region 𝛺0.  At time t(1), the wave function has 
split into two disjoint parts, non-zero only in the regions Ω(1) and Ω(2).  The quantum 
probabilities for being on branch 1 or 2 are then resp. 
 

                                                      ∫ 𝑑3𝑥𝜓∗(𝑥, 𝑡2)𝜓(𝑥, 𝑡2) = |𝑎(1)|2

Ω(1)

                                            (13) 

                                                       ∫ 𝑑3𝑥𝜓∗(𝑥, 𝑡2)𝜓(𝑥, 𝑡2) = |𝑎(2)|2

Ω(2)

                           

 
But because the Bohm probability density is the same as the quantum probability 
density, we will get that the Bohm probability of the trajectory entering branch 1 is |a(1)|2 
and the Bohm probability of the trajectory entering branch 2 is |a(2)|2.  That is, no matter 
how complicated the trajectories (and they are indeed complicated), just the right 
number of them will enter branch 1 so the probability law is satisfied.  This happens 
because Bohm chose the trajectory density to be identical to the quantum density.  
 
 This ends our brief description of the Bohm model.  See Ch. 20 for the 
weaknesses of the model. 
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