
A12.2 Basic elements of representation theory. 
 
1. Invariance group of a linear operator. 

As an illustration, consider the equation 
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where u,v are complex variables, O stands for the linear, partial differential operator, 
and the bar denotes complex conjugation.  The form of this operator is invariant under 
the set of all unitary transformations of the u,v variables 
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That is, one can show that 
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If one unitary transformation is multiplied by another, the product is also a unitary 
transformation, so the set of all unitary 2x2 transformations with determinant 1, SU(2), 
forms (part of) the invariance group of the operator O. 
 
2. Basis vectors. 
 We define the operator U(A) such that 
 
                                                       𝑈(𝐴)𝑓(𝑢, 𝑣) = 𝑓(𝑢′, 𝑣′)                                                                      (4) 
 
where 𝑢′, 𝑣′ are defined in Eq. (2).  Then if f is a solution to Eq. (1), we have 
 
                                             𝑈(𝐴)[𝑂(𝑢, 𝑣)𝜓(𝑢, 𝑣)] = 0 
                                                                                       =  𝑂(𝑢′, 𝑣′)𝜓(𝑢′, 𝑣′)                                             (5) 
                                                                                       = 𝑂(𝑢, 𝑣)𝜓(𝑢′, 𝑣′) 
 
That is, if the original function is a solution to the equation, so is the function with the 
variables transformed.  But the set of all functions 𝜓(𝑢′, 𝑣′) = 𝜓(𝑎11𝑢 + 𝑎12𝑣, 𝑎21𝑢 +
𝑎22𝑣), as A runs through SU(2), are not (in general) linearly independent.  If we start 
with the solution 𝑢2 for example, then as A runs through SU(2), there are only three 
independent functions— 𝑢2, uv, and 𝑣2.  We can think of these three functions as 
forming the basis for a three dimensional vector space which is closed under the unitary 
transformations of Eq. (2). 
 It is useful to introduce an SU(2)-invariant scalar product in this vector space.  
We choose  
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We then represent the functional basis vectors by kets according to 
 
                                                      𝑐𝑢 = |1/2〉,   c𝑣 = |− 1 2⁄ 〉                                                                 (7) 
                                                                      〈𝑖|𝑗〉 = 𝛿𝑖𝑗 
 
with c chosen so the norm is 1.  That is, kets stand for functions of the underlying 
variables u and v.   

The three functions 𝑢2, 𝑢𝑣, 𝑣2, or, in ket notation,  
 
                                           𝑎𝑢2 = |1〉, b𝑢𝑣 = |0〉, 𝑎𝑣2 = |−1〉                                            (8) 
  
where a and b are chosen so that 

〈𝑖|𝑗〉 = 𝛿𝑖𝑗 
 
are also carried into linear combinations of each other by the transformations of Eq. (2).  
Remembering that the kets stand for function of u,v, we have, summing j from 1 to 3, 
and using Eq. (7), 
 
                                                               𝑈(𝐴)|𝑖〉 = 𝑅𝑗𝑖

[3]
(𝐴)|𝑗〉                                                                (9) 

 
where the trailing superscript indicates the Rs, quadratic in the aij, form a three 
dimensional representation of SU(2) in the sense that multiplication is preserved.  That 
is, if transformation A is followed by transformation B and BA=C, then 

𝑅(𝐵) 𝑅(𝐴) = 𝑅(𝐶)
[3][3][3] , where the multiplications are matrix multiplications.  Similarly 

the four functions 𝑢3, 𝑢2𝑣, 𝑢𝑣2, 𝑣3, suitably normalized, form the basis for a four 
dimensional representation of SU(2), and so on. 
 
3. Generators of transformations. 

The structure of continuous groups is almost completely determined by 
transformations very near the identity.  To illustrate, we will use O(3), the group of all 
rotations in three dimensions.  Consider small rotations, 𝜀, about the z-axis,  
 

𝑥′ = 𝑥cos(𝜀) + 𝑦sin(𝜀) ≅ 𝑥 + 𝑦𝜀 
                                                        𝑦′ = 𝑦cos(𝜀) − 𝑥sin(𝜀) ≅ 𝑦 − 𝑥𝜀                                               (10) 

𝑧′ = 𝑧 
 
This transformation of variables has the following effect on an arbitrary function; 
 

𝑈𝑧(𝜀)𝑓(𝑥, 𝑦, 𝑧) ≅ 𝑓(𝑥 + 𝑦𝜀, 𝑦 − 𝑥𝜀, 𝑧) 
                                                    ≅ 𝑓(𝑥, 𝑦, 𝑧) + 𝑖𝜀[𝑖𝑥𝜕𝑦 − 𝑖𝑦𝜕𝑥]𝑓(𝑥, 𝑦, 𝑧)                                         (11) 



= 𝑓(𝑥, 𝑦, 𝑧) + 𝑖𝜀𝐿𝑧𝑓(𝑥, 𝑦, 𝑧) 
 
where the linear, first order differential operator  Lz is the Hermitian generator of an 
infinitesimal rotation about the z axis.  We can also construct generators for rotations 
around the x and y axes, with the results 
 
                           𝐿𝑥 = 𝑖[𝑦𝜕𝑧 − 𝑧𝜕𝑦], 𝐿𝑦 = 𝑖[𝑧𝜕𝑥 − 𝑥𝜕𝑧], 𝐿𝑧 = 𝑖[𝑥𝜕𝑦 − 𝑦𝜕𝑥]                (12) 
 
We find that the commutator of any two of these yields a generator back; 
 
                                 [𝐿𝑥, 𝐿𝑦] = 𝑖𝐿𝑧 , [𝐿𝑦, 𝐿𝑧] = 𝑖𝐿𝑥, [𝐿𝑧 , 𝐿𝑥] = 𝑖𝐿𝑦                                    (13) 
 

More generally, every continuous group yields a finite number of linearly 
independent generators of infinitesimal transformations, and the commutator of any two 
of them is a linear combination of the generators.  The commutation relations essentially 
define the group.  

It is interesting that the three generators of SU(2), 
 

𝑆𝑥 = (1 2⁄ )(𝑢𝜕𝑣 + 𝑣𝜕𝑢) + ℎ. 𝑎. 
                                                           𝑆𝑦 = (𝑖 2⁄ )(𝑣𝜕𝑢 − 𝑢𝜕𝑣) + ℎ. 𝑎.                                                  (14) 

𝑆𝑧 = (1 2)⁄ (𝑢𝜕𝑢 − 𝑣𝜕𝑣) + ℎ. 𝑎. 
 
obey the same commutation relations as the Ls of Eq. (12); 
 
                                 [𝑆𝑥, 𝑆𝑦] = 𝑖𝑆𝑧, [𝑆𝑦, 𝑆𝑧] = 𝑖𝑆𝑥, [𝑆𝑧, 𝑆𝑥] = 𝑖𝑆𝑦                                     (15) 
 
Therefore the two groups, O(3) and SU(2), must be essentially identical (actually there 
is a 2 to 1 map of SU(2) onto O(3)).  It is also of interest that the set of all 2x2 complex 
matrices of determinant 1, SL(2), is homomorphic to the homogeneous Lorentz group of 
relativistic transformations. 
 
4. Matrix representatives of linear operators. 

One can obtain a matrix representation of a linear operator, such as a generator, 
by generalizing the idea behind Eq. (9).  To verify that it is a faithful representation, we 
must show that the proper multiplication rule holds.  If 𝑅𝑖𝑗(𝐴) represents the matrix 
elements of the representation of A, then we have, with a sum over repeated indices,  
 
                                                            𝑈(𝐴)|𝑖〉=|𝑗〉𝑅𝑗𝑖(𝐴)                                                         (16) 
                                                            𝑅𝑗𝑖(𝐴) =〈𝑗|𝑈(𝐴)|𝑖〉                                                        (17) 
                               𝑈(𝐵)𝑈(𝐴)|𝑖〉 = 𝑈(𝐵)|j〉𝑅𝑗𝑖(𝐴) = |𝑘〉𝑅𝑘𝑗(𝐵)𝑅𝑗𝑖(𝐴)                                         (18) 
 
But 𝑈(𝐵𝐴)|𝑖〉 = |k〉𝑅𝑘𝑖(𝐵𝐴) and so the proper matrix multiplication rule, 𝑅(𝐵𝐴) =
𝑅(𝐵)𝑅(𝐴), holds. 
 As an example of converting an operator to matrix form, consider the linear 
operator Sx of Eq. (14) and use the two dimensional basis of Eq. (7).  We see that 



 
                                        𝑆𝑥|1 2⁄ 〉 = (1 2)𝑣 = (1 2)|− 1 2〉 = 𝑅21⁄ | − 1 2〉⁄⁄⁄                              (19) 

𝑆𝑥|−1 2⁄ 〉 = (1 2)𝑢 = (1 2)| 1 2〉⁄⁄⁄ = 𝑅12| 1 2〉⁄  
 
and so the two dimensional matrix representative of Sx is 
 

                                                                           𝑆𝑥 =
1

2
[
0 1
1 0

]                                                               (20) 
 
5. Irreducible representations. 

The set of five functions, u,v,u2,uv,v2, are mapped into linear combinations of 
each other by a transformation from SU(2), so they form the basis for a representation 
of that group.  But u and v alone also form the basis for a two dimensional 
representation, and u2,uv,v2  separately form the basis for a three dimensional 
representation.  Thus the five dimensional representation is reducible.  But the two 
dimensional and three dimensional representations cannot be further reduced.  This 
idea of reducible and irreducible representations generalizes to representations of all 
groups. 
 
6. Invariants. 

The operator 𝐿𝑥
2 + 𝐿𝑦

2 + 𝐿𝑧
2 = 𝐿2  from O(3) commutes with all three Ls.  This 

implies it is invariant under all rotations.  All the basis vectors in a given irreducible 
representation are eigenvectors of L2, with the same eigenvalue, so L2 is a multiple of 
the identity in each irreducible representation.  Basis vectors for different irreducible 
representations have in general different values for the eigenvalue. 
 This idea also generalizes.  For each group, there will be polynomials in the 
generators which commute with all the generators and are therefore invariant under 
transformation from the group.  Basis vectors for each irreducible representation will be 
eigenvectors of each invariant, and each different irreducible representation will have a 
different set of eigenvalues.  Basis vectors within an irreducible representation are 
usually chosen to be eigenvectors of one or more of the generators.  For example, basis 
vectors for SU(2) are usually taken to be eigenvectors of sz.  If the representation is of 
dimension n+1, the n+1 eigenvalues are −𝑛 2⁄ , −𝑛 2 + 1⁄ , … , +𝑛/2. 
 For the inhomogeneous Lorentz group, there are two invariants, one 
corresponding to mass and one to spin so representations are labeled by m and S.  The 
vectors within a representation are labeled by energy, momentum, and z component of 
spin.  The true internal symmetry group is not currently known, so we don’t know the 
invariant operators.  The charges, which are the eigenvalues of the diagonal generators, 
label basis vectors within a representation. 
 
7. The permutation group.  Antisymmetry. 
 There is one other group whose representations are important in quantum 
mechanics, the permutation group.  This group occurs when one has a linear operator 
in many variables, with the operator being invariant under permutations of variables.  
For example, if the linear operator is 
 



𝒪(1,2) =
∂2

∂2𝑥1
+

∂2

∂2𝑥2
+ 𝑉(|𝑥1 − 𝑥2|) 

 
and if you exchange variables 1 and 2, you get the same operator back; 

𝒪(2,1) =
∂2

∂2𝑥2
+

∂2

∂2𝑥1
+ 𝑉(|𝑥2 − 𝑥1|) = 𝒪(1,2) 

 
 As another example, consider the operator 
 

𝒪(1,2, … , 𝑁) = ∑ ∂2/ ∂2𝑥𝑖

𝑁

𝑖=1

+ ∑ 𝑉(𝑥𝑖, 𝑥𝑗)

𝑗≠i

 

 
Then it is easy to show that 𝒪(2,1,3, … , 𝑁) = 𝒪(1,2,3, … , 𝑁), and more generally that 𝒪 is 
invariant (does not change) under any permutation of the variables.  The set of all such 
permutations forms a group, 𝒫(𝑁),  with N! elements.  There are many representations 
of 𝒫(𝑁), of varying dimensions and there will in general be solutions of 𝒪Ψ = 0 
corresponding to each representation.  One can then catalog solutions according to 
which representations they belong to. 
 
Symmetric and antisymmetric representations. 
 There are two representations of 𝒫(𝑁) that are of particular interest in physics.  
The first is the symmetric representation, in which the function does not change under 
any permutation p.  If p exchanges variables 1 and 2, for example, then one has, for a 
function belonging to the symmetric representation, 
 

𝑝(1 ↔ 2)𝛹𝑆(1,2, … , N) = 𝛹𝑆(2,1, … , N) = 𝛹𝑆(1,2, … , N) 
 
All bosons—particles with integer spin (0,1,2,…)—belong to the one-dimensional 
symmetric representation. 
 The second representation of interest is the one-dimensional antisymmetric 
representation in which any exchange just gives a minus sign.  For example 
 

𝑝(1 ↔ 2)𝛹𝐴(1,2, … , N) = 𝛹𝐴(2,1, … , N) = −𝛹𝐴(1,2, … , N) 
 
All fermions—particles with odd half integer spin (1/2,3/2,…)—belong to the 
antisymmetric representation.  This representation is of particular interest in Part IV. 
 It is not currently known why only symmetric and antisymmetric representations 
occur in quantum mechanics. 
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